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Abstract

We discuss a new conceptual framework for the convexification of
discrete optimization problems, and a general technique for obtaining
approximations to the convex hull of the feasible set., The concepts
come from disjunctive programming and the key tool is a description of
the convex hull of a union of polyhedra in terms of a higher dimensional
polyhedron. Although this description was known for several years, only
recently was it shown by Jeroslow and Lowe to yield improved represen-
tations of discrete optimization problems., We express the feasible
set of a discrete optimization problem as the intersection (conjunction)
of unions of polyhedra, and define an operation that takes one such
expression into another, equivalent one, with fewer conjuncts, We then
introduce a class of relaxations based on replacing each conjunct (union
of polyhedra) by its convex hull, The strength of the relaxations in-
creases as the number of conjuncts decreases, and the class of relaxa-
tions forms a.hierarch& that spans the spectrum between the common
linear programming relaxation, and the convex huil of the feasible set
itself, Instances where this approach presents advantages include
critical path problems in disjunctive graphs, network synthesis problems,
certain fixed charge network f£low problems, etc, We iliustrate;the

approach on the first of these problems, which is a model for machine

sequencing,
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1. Introduction

Most discrete optimization problems are solved by some kind of enumera-

tive procedure. These procedures use relaxations of the feasible set, and
of the subsets into which the latter is broken up, in order to derive bounds
on the objective function value of these subsets., Their efficiency depends
crucially on the strength of these bounds, which in turn hinges on the strength
of the relaxation used. The most commonly used relaxation is the linear pro-
gram obtained by removing the integrality conditions, sometimes amended with
cutting planes. However, some integer programming problems have more than
one formulation, and the various formulations may give rise to linear pro-
gramming relaxations of varying strengths., This was known for a long time
about the simple plant location problem, for which the disaggregation of
the capacity constraints involving the 0-1 variables produces a consider-
ably stronger linear program than the aggregated one. To the disaggrega-
tion of the capacity constraints, Rardin and Choe [1l] have recently added
a disaggregation of the flow variables of fixed charge network flow problems,
either from arc into path flows, or from single commodity into multi-
commodity flows, which often yields a stronger linear program than the
one in the original variables.

Approaching the problem from another standpoint, that of mixed
integer representability of various functions and sets, Teroslow and Lowe
[10] have recently shown how certain mixed integer formulations using a

larger number of variables than the common formulation, give rise to stronger

linear programming relaxations, Their approach essentially uses disjunctive

programming, and our work is closely related to theirs,




T — T ML el DU el el aral h -l gy T ——w » O e N T A e Zaa - TR TR wgew - e

Disjunctive programming is optimization over disjunctive sets. A

disjunctive set is a set defincd by inequalities connected to each other by

the operations of conjunction (A, juxtaposition, "and") or disjunction

(V, "or'"). Since inequalities define halfspaces, a disjunctive set can also
be viewed as a collection of halfspaces joined together by the operations of
intersection (N) or union (U). A disjunctive program is then a problem

of the form min{cx|x ¢ F}, where F is a disjunctive set.

Any integer or mixed integer program can be stated as a disjunctive
program, usually in more than one way. Conversely, any bounded disjunctive
program can be stated as a pure or mixed integer O-1 program. This is not
always true, though, of an unbounded disjunctive program: the set
x, <0V xj > 1, for instance, cannot be represented by the use of inﬁeger

]
variables unless x, is bounded.

i

Besides this - not too important - difference in the domain of applica-

bility of the two problem classes, it is often convenient to view integer

programming problems as disjunctive programs. Apart from the fact that this

is the most natural and straightforward way of stating many problems in-

\’".'."& ClecmnO

volving logical conditions (dichotomies, implications, etc.), the disjunctive

programming approach seems to be fruitful both theoretically and practically.

Ty
.

On the theoretical side, it provides some neat structural characterizations

v

which offer new insights., On the practical side, it produces a variety of

vy
L

cutting planes, including facets of the convex hull of feasible points,
which are hard to obtain by other means, In some cases, like set covering
and partitioning, these cutting planes have been shown to be considerably

stronger than those derived by other means, and have been successfully used
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in algorithms. In this paper we show that disjunctive programming also pro-
vides strong relaxations of an integer program. For background on disjunc-

tive programming, see the surveys [4], [9], [12].

In this paper we introduce a general framework in which various linear
programming relaxations can be classified, ranked, strengthened at a given
computational cost, and viewed from a unifying perspective. In fact, we
provide a family of relaxations of a (pure or mixed) integer 0-1 program (P)
whose members form a hierarchy in terms of their strength, or tightness. The
members of this hierarchy span the whole spectrum between the usual linear
programming relaxation and the convex hull of the feasible set of (P). This
is obtained by viewing (P) as a disjunctive program and making use of the
rich variety of representations available for the latter. Our main tool
is the operation of taking the convex hull of various disjunctive sets.

The paper is organized as follows. Section 2 discusses some basic
properties of disjunctive sets and their equivalent forms, and describes
a procedure for systematically generating these forms from each other.
Section 3 deals with characterizations of the convex hull of a disjunctive
set, and their relationship to mixed integer representatioms of such a
set. Section 4 introduces the hull relaxation of a disjunctive set, which
gives rise to the hierarchy of relaxations mentioned earlier. Section 5
illustrates these concepts and procedures on the disjunctive graph formula-

tion of the machine sequencing problem,
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2. Disjunctive Sets and Their Equivalent Forms

We denote a halfspace by
H = {x ¢eR%|ax > ao},

where ae‘RF, aoeiR. While the intersection of a finite collection of

halfspaces, i.e., a set of the form

P= N H;.'_' = {z emnlaix >a ieM}

2
{eM io

is known as a polyhedron, we call the union of a finite collection of
halfspaces, i.e., a set of the form

D= UH = (x eR"| V (a'x >3 )},
1eM 1eM

an elementary disjuncgive set,

A disjunctive set T can be expressed in many different forms, that
are logically equivalent and can be obtained from each other by considering
F as a logical expression whose statement forms are inequalities, and
applying the rules of propositional calculus., Among these equivalent

forms, the two extreme ones are the conjunctive normal form (CNF)

where each Di is an elementary disjunction, and the disjunctive normal

form (DNF)

where each Pi is a polyhedron.
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The usual statement of most discrete optimization problems is in the
form of an intersection of elementary disjunctions, that is in CNF, We give
a few examples.

The feasible set of a mixed integer O-1 program, given by the constraints

a‘x > bi’ ieM; 0 < xj <1, jeN; xj <o0v xj >1, jeI < N;
is in CNF, and can be writtemn as F =N Di’ with T =M U N1 U N2 U I (where
ieT
- - . i - ; .
Nl N2 N), and Di defined as {x]a x> bi} for ieM; {x]xi > 0} for leNl,

{x]-xi > -1} for ieN,; and {x|-xi 20V x > 1} for ieI.

The DNF of the same set is F = U PS’ where PS is the set of those x
S<T

satisfying a‘x > bi’ ieM; 0 < xj <1, jeN; xj > 1, jeS; and -xj > 0, jeI\S.
Similarly, the feasible set of a linear complementarity problem given by
i i i, .
aX+by=c,1eM;xj20,yj20, JeN; %, <0V y, <0, jelj

is in CNF, and so is the feasible set of the machine sequencing problem [1]

t, - t, >d,, (i,5) ¢ 2,

e
v
Q

ieV,
(1,3), (3,1) e W,

where each inequality of Z defines a precedence relation between two jobs,

and each disjunctive pair (i,j), (i,1) e W states the condition that jobs i

and j cannot overlap.
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On the other hand, the feasible set of the set covering problem de-
fined by the m X n matrix A = (aii)’ aije{o,l}, % 1i,j, can be stated in
CNF either in the same way as shown for the general mixed integer program,

or else by letting T = M(={l,...,m}) and F =N D,, with
ieT
D, = {x‘ vVoo(x, > 1)}, ieT, where Ni‘=(ch]ai. = 1}, The DNF of the same
1 JGN:L ] ]
problem, on the other hand, is F = U [xlxj > 1, jeC}, where C is the set

CceC
of all covers,

Although the CNF and the DNF are the two extremes of the spectrum of

equivalent forms of a disjunctive set, they share a property not common to

all forms: each of them is an intersection of unions of polyhedra. We will

say that a disjunctive set that has this property is in regular form (RF).

Thus the RF is

(2.1) F= Ns,,
jeT J

where for jeT,

(2.2) Sj = U Pi’ Pi a polyhedron, ier.
The CNF is the RF in which every Sj is elementary, i.e., every
polyhedron Pi is a halfspace. The DNF, on the other hand, is the RF in which

IT\ = 1. Notice that if F is in the RF given by (2.1), (2.2), each Sj is in

DNF. A disjunctive set Sj in the DNF (2.2) will be called improper if
Sj = Pi for some ier, proper otherwise., Any disjunctive set Sj such that
\Tj\ = 1 is improper. Sj is convex (and polyhedral) if and only if it is

improper.
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Next we define an operation which, when applied to a disjunctive set
in RF, results in another RF with one less conjuncts, i.e., an operation
which brings the disjunctive set closer to the DNF. There are several
advantages to having a disjunctive set in DNF, i.e., expressed as a union of
polyhedra; beyond this, the motivation for the basic step introduced here

will become clearer below when we discuss relaxations of disjunctive sets.

Theorem 2.1. Let F be the disjunctive set in RF given by (2.1), (2.2).

Then F can be brought to DNF by |T| - 1 applications of the following basic
step, which preserves regularity:

For some k,2 ¢ T, k # 4, bring S n SL to DNF, by replacing it with

P () A Wy ne)/qu_/P
16Q, \Q, j€Q,\Q ieQ M,

2.3) S

Proof. First we show that Skz is the DNF of Sklﬂsz. By the dis-

tributivity of U and N, we have

(o 20 (Y 2)

1er jGQJz

SkaSl

(]

U u (e

iﬂP ).

But for every ioc Qk N Qz,

U (P, NP,) =P, = y (P,NP, ),
jeQ, io i , jer I,

and thus Skﬂsz = Skz as defined in (1.3).

The set F given by (2.1), (2.2) is the intersection of ]T\ unions of
polyhedra. Every application of the basic step replaces the intersection of
p unions of polyhedra (for some positive integer P) by the intersection of
p-1 unions of polyhedra. Regularity is thus preserved, and after |T\ -1

basic steps F becomes a single union of polyhedra, i.e., is in DNF.J
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Remark. If Sk = Pi for some ierk, i.e., Sk is improper, then

Pio if ierz
(2.4) Siey =
U (Pi NP,) otherwise .
jeQz (o] J
Every basic step reduces by one the number of co .cts Sj in the RF
to which it is applied. On the other hand, it is also interest to know

the effect of a basic step on the number of polyhedra w > unions are the
conjuncts of the RF. When the basic step is applied to  air of conjuncts
Sk’ Sz that are both proper disjunctive sets, namely unions of polyhedra
indexed by Qk and Qz, respectively, then the set Skz resulting from the

basic step is the union of p polyhedra, where
p = Q) \Q,l x le\e | + [g ng,l.

This is to be compared with the number of polyhedra in the unions defining
S, and S,, which is \le + |q,|. Obviously, more often than not a basic
step applied to a pair of proper disjunctive sets results in an _increase in
the number of polyhedra whose union is taken. On the other hand, when one
of the two disjunctive sets, say S

K’ is improper, then skl is the union of

at most as many polyhedra as Sz.

Given a disjunctive set in CNF with t conjuncts, where the ith conjunct
is the union of q; halfspaces, and given the same disjunctive set in DNF, as
the union of q polyhedra, we have the bounding inequality

q < 9 XeooX qt.

Because performing a basic step on a pair Sk, SL such that Sk is

improper, results in a set Skz that is the union of no more polyhedra than

is Sz, it is often useful to carry out a parallel basic step, defined as

follows:

—r PP TP PP S > - Bl i . LN PPy R W . e A
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For F given by (2.1), (2.2), and Sk= Pi for some ioan (i.e., S
o)
improper), replace N S, by ~ \Sk" where each S
jeT 4 7 jer\{k} ¥I
Note that if some of the basic steps of Theorem 2.1 are replaced

k
kj is defined by (2.4),

by parallel basic steps, the total number of Steps required to bring F to

DNF remains the same.

Next we turn to the operation of taking the convex hull of a disjunc-

tive set, which plays a central role in the construction of the family of

relaxations that we are about to introduce.

3. The Convex Hull of a Disjunctive Set

We have two characterizations of the convex hull of a disjunctive set,

each of which requires the set to be in DNF. The first one is described by

the following two theorems.
Theorem 3.1 (3, 4, 91. Let

(3.1 Fx Ur, B o= (x eR%alk zal), 1aq,
ieQ

i, . i, .
where each A~ is an mi X n matrix, each ao is an mf-Vactor, and Q is an

arbitrary index set, Let Q% = {ieQIPi # 9}, and let

n+l
ax > o for all (a,ao)eim such that

n _ii ii-* .
CQ*) =<¢ xe¢ R @ =uh", o <ua, 1eQ¥

i i e
for some u¢eR ~, u > 0, 1eQ*

Then

clconv F = C(Q*).
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E For the next Theorem we need a definition. An inequality ax > do is _i

3 "

g said to define (or induce) a facet of a polyhedron P of dimension n, if 1

A 1

g

- ¥x > @ for all xeP, and ax = o for n affinely independent points xeP, ;

]

Theorem 3.2 [3, 4]. Let the set F defined by (2.1) be full-dimensional, ‘

and let Q be finite. Then the inequality gox > ) where @, # 0, defines a ;

-

facet of clconv F if and only if ¢ # 0 is a vertex of ”

y = ulAi, ieQ* j

4 ; |

F'# = ye]Rn for some u- >0, 1eQ* ;i

_ such that uiai > g h

< o= "o \

Analogous results are known for the cases where F is less than full 1

)

dimensional and/or o, = 0 (see [3]). |

This characterization can be used to derive strong cutting planes ]

whenever Q is small or, although Q is large, the special structure of the s

E/
polyhedra Pi makes it easy to find vertices of Ff. Such cutting planes have

been derived in [2, 4, 5, 7, 12] and have been successfully used to solve,
for instance, set covering [6] and set partitioning [8] problems.

The second characterization expresses the convex hull of a disjunc-

MR o I Ak A Ad Ad A
‘i

v

tive set as the projection into R” of a higher dimensional polyhedron.

D e 4

It is this second characterization that we are going to use extensively 3

e in this paper. Since this result is from an unpublished technical report, L
we provide the proof here. As before, we denote Q* = {itePi 0},

{ Theorem 3.3 [3]. Let F be given by (3.1), and let 3(Q*) be the set

4 of all those x ¢ R® such that there exist vectors (yl, y;)eimp+1, ieQ*, y
1

s )
. satisfying )
A 1
p

$

—
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X~ T v =0
ieQ*
ii_ id "
A'yT -azy 20 , 1eQ
(3.2)
zvci,=1
ieQ*
i
y_. >0 , 1ieQ*.
0 =
Then

¢l conv F = S(Q*%).

Proof. (1) We first show that conv FS8(Q*). Let x € conv F; then

;=Zz)\

ieQ* 1

for some points ziePi, ieQ*, and scalars }‘i >0, 1ieQ*, such that I ki = 1.
g i_ 1 i_ * i 1
etting y° = 2 Ay ‘and Y, = )‘i’ 1e¢Q*, we obtain a set of vectors (y-, yo),
ieQ*, that together with x satisfy (3.2); hence x ¢ $(Q%).
(i1) Next we show that 3(Q*) Scl conv F. Let x ¢ 8(Q*) and let

(;i, ;i), 1eQ*, be vectors that together with x satisfy (3.2). Let

ot = {1so*|yl >0}, f = (1ee*|y] = ol

For ieQ’f, ;i/;i‘ is a solution to Aix > ai, i.e., (;i/;i) ePi; therefore
;i/;i = I vijp.i. + z wl'k 1k
jeVi 3 kewi

for some extreme points vij and extreme direction vectors wik of Pi’ in-

dexed by Vi and wi respectively, and some scalars g 5 >0, jeVi, Vi >0,
-t =i
keW ! = . = =
L satisfying jiv "'ij 1. Setting “‘ijyo pij’ Vi 6ik’ we obtain
i

_ ., - PO P S G S
o o PR P S P - . o
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G ez vijoij + T wikcik ‘1
a jev, keW,
i i
with p,, >0, jeV,, o, >0, keW,, and &£ g, = y> ]
1 = Y I35 Ty = Uy KA, =Py T Yy )
JeVi J
N -t =i : 1
. For ieQ?z\', either y° = 0, or else y 1is a nontrivial solutiom to the :
X homogeneous system Aiy > 0; hence
» = ik ' 1
d AR T ‘
keW,
i
! for some extreme direction vectors w"k of Pi’ indexed by Wi’ and some scalars
< Opie 2 0 ke
% Thus we have
- x= Ty
ieQ*
/ \
= £ (2 v TR wik°ﬂJ+ z (= ik"ik)’
* e AY
1eQ1 jev k 1 1€Q'5 ker
= Z z vijp j+ z z wikc:ik
* 3
g ite JeVi ieQ* keWi
, with
— -1
Er. X z Pij = z Yo = 19
ieQ’f jevi icQ"lf

i.e., X is the convex combination of finitely many points and directions

e of F. Hence ; € cl conv F.

g

} (iii) Since

;I. conv FeS(Q*) <cl conv F
P

and 3(Q*) is closed, while cl conv F is the smallest closed set containing .

conv F, clearly 3(Q*) = cl conv F.|| ‘

| @ g
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In order to use this characterization of the convex hull, one needs
to know which Pi are nonempty, This inconvenience is considerably mitigated
by the fact, to be shown below, that the information in question becomes
irrelevant if the systems Aiyi > ai satisfy a condition that is often easy
to check. Let (3.2)Q be the constraint set obtained from (3.2) by substi-
tuting Q for Q*, and let 8(Q) be the set obtained from 3(Q*) by the same
substitution, For any polyhedron P, let rec P denote the recession cone

of P, i.e.,

rec P := {y|x + A\yeP, ¥ x ¢ P, % A > 0}.

If S1 and 82 are sets, we denote

L y2 for some ylesl, yZeSZ}.

Sl+52={x|#=y

Theorem 3.4. $(Q) = 3(Q*) if and only if

: (3.3) —/{ye IRn\Aiy 20}s £ recP.
FI ieQ\Q* 1eQ*

i i . .
Proof. For 1eQ\Q*, A"y - aoyo‘z 0, y, 2 0 implies y, = 0.

L Therefore

f4
; $(Q) = 3(Q*) +C,

where C is the expression (union of polyhedral cones) on the lefthand side

< of (3.3). Clearly, S(Q*) + C = 2(Q*) if and only if C<rec $(Q*). But from

Theorem 3.3,

rec $(Q*) = rec cl conv F
\ = ¥ rec Pi’
i eQ*

hence 8(Q) = 5(Q*) if and only if (3.3) holds.|
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Corollary 3.5. If for every ieQ, some subset of the set of inequalities

Aiyi > ai defines a bounded nonempty polyhedron, then 8(Q)} = $(Q*).

Thus the disjunctive program min{cx|x ¢ F}, where F is given by
(3.1), is equivalent to the linear program min{cx]x e 8(Q*)}. Furthermore,
there is a 1-1 correspondence between vertices of the polyhedra Pi’ ieQ*,

and basic solutions of the system (3.2), More specifically ([3]:

(1) 1If X is a vertex of Pi for some ieQ*, then the vector with
components (;i, ;2) = (x, 1), (;k, ;ﬁ) = (0, 0), keQ' {1}, together with x,
is a basic solution of the system (3.2).

(11) 1If % together with (§k, §§), keQ, is a basic solution of
(3.2), then (5%, §1) = (%, 1) for some isQ*, (5, §) = (0, 0) for keq\[1},
and X is a vertex of P, .

Thus all basic solutions of the system (3.2) (or (3.2),) satisfy the

Q

condition yie{o, 1}, 1eQ. On the other hand, a solution of (3.2) (or (3.2).)

Q
satisfying this condition need not be basic. It is then natural to ask the

question, what do such solutions represent? The next theorem addresses this
issue,
We denote by SI(Q) the set of those x ¢ R" for which there exist

n+l

vectors (yi, yi)e]R , 1eQ, satisfying the constraints of (3.2)Q and

the condition yi =0or 1, ieQ; i.e.,

3.(@: = {x e3@]ylelo, 1}, 1eQ}.

Theorem 3.6. Let F = U P, Q% = [itePi # 0}, and Q%* = {ieQ*|P, £ P,
ieQ 1 b

¥ jeQr {i}}. 1If F satisfies

AR ananh 4 3 . AR e a Py A
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(3.4) rec Pi = rec Pj , ¥ i, jeQ*
and
(3.5 {y]ay 20} S rec B, , ¥ keQ\Q¥, ieqr*
then
3I(Q) = F.

Proof. With or without (3.4) and (3.5), SI(Q)izF. Indeed, if x ¢ P,
for some ieQ, then x together with the vectors (yl, yi) = (x, 1), (yk, y:) =
(0, 0), keQ\{i}, satisfies the constraints defining 8:(Q). It remains to be

shown that if (3.4) and (3.5) hold, SI(Q) <F.

Suppose (3.4) and (3.5) are satisfied and let x ¢ SI(Q). Then there

exists keQ**, Q’cQ** and Q” < Q\Q*, such that

x =y + Iyt
1eQ'UQ”

and x together with the vectors (yk, 1, (yi, 0), ieQ'UQ”, and (yj, yg) =

(0, 0), 5eQ\Q'UQ” Uk}, satisfies (3.2)Q. But then ykePk and yie rec P

for ieQ' (from (3.4)) and for 1¢Q” (from (3.5)). Thus x ¢ Pk'”

While the condition of Theorem 3,6 is not necessary, it is as weak

a sufficient condition as one can get without breaking up Q** into further

subsets, for some of which the equality in (3.4) can be weakened to inclusion.

The essential fact about Theorem 3.6 is the following immediate
consequence, which was proved earlier in a different way by Jeroslow and

Lowe [10].

Corollary 3,7. If each Pi is nonempty and bounded, then SI(Q) =F,
Thus not only is $(Q) the convex hull of the union of the nonempty,

bounded polyhedra P i¢Q, but SI(Q) is a valid mixed-integer representation

JCHURIpE" S
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of such a union of polyhedra. As Jeroslow and Lowe [10] have recently
noticed, this representation is better than the usual one, since its linear
programming relaxation is 5(Q), the convex hull of the union, which is often
not true of the usual representation. By the latter we mean the representa-
tion of F = U Pi as the set AI(Q) of those x ¢ R" satisfying
ieQ
alx - @l - 1hs, >, ie
o i-=
8,
ieQ

5ie{o, 1} , ie&Q .

[}
—

where each L' is a lower bound (vector) on Alx.

If we denote by A(Q) the set obtained from A (Q) by relaxing the
conditions éie{O, 1} to 51 >0, 1ieQ, A(Q) is not necessarily the convex

hull of F. In other words, while 3(Q) = conv SI(Q) whenever all P, are non-

i

empty and bounded, for A we only have the relation

A(Q) = conv AI(Q)

which often holds as strict inclusion, as will be illustrated later.
We need one more result before introducing the family of relaxations
of a disjunctive set., Namely, we want to use Theorem 3.3 to characterize

the convex hull of an elementary disjunctive set.

Theorem 3.8. Let D = U B = {x eiRn\ v (aix >a, )}. Then
e ——————— . i . - io
ieQ ieQ
n
R if D is proper

¢l conv D =
H if D is improper, with D

i

. a a A [P U R O U G P FDU A
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Proof. If D = H: for some keQ, cl conv D = H.: since H:l: is closed )
and convex. Suppose now that D is proper, and let % be an arbitrary but

fixed point in R®. From Theorem 3.3, X € cl conv D if and only if the

system i
z yi = -x- 1
ieQ
il i
a'y - a, y 20 , i i

z yf; =1

ieQ
i o
¥,20 , i

has a solution. From the Theorem of the Altermative, this is the case if

and only if the system

-ui’a + v =0 , 1ieQ

ieQ

aalB A

(3.6)

a 'T':'.T'r».v M
(=1
[

[
o
i
<
o
v
o
-

r';‘ ui_>_0 , 1eQ, %
<
. -l
t where uci’e R, 1ieQ, v,€ R, and ve ]Rn, has no solution. :}
b - .
. |
E.' Since D is proper, there exists no keQ such that H:;H;’ ¥ ieQ; |
rd i 11 kk 1
3 hence there exist no scalars u >0, 1eQ, such that ua, = uoa y ¥ 1eQ.

b

3 Thus (2.6) has no solution for any ;, and hence x ¢ cl conv D for all

[ x eRn, i.e., cl conv D =]Rn.“

f‘.

[ﬂ

[

]
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The convex hull of a proper elementary disjunctive set is thus]Rn,
i.e., replacing such a set with its convex hull is tantamount to throwing
away all the constraints that define it. This of course is not true for
more general disjunctive sets, as will become clear soon.

The system (3.2) which defines the convex hull of a disjunctive set
in DNF is easy to write down, but is unwieldy when the set Q is large; and
for a mixed integer program whose feasible set F is expressed as a disjunc-
tive set in DNF, Q tends to be large, Thus an attempt to use Theorem 3.3
to generate the convex hull of the feasible set is in general not too
promising.

On the other hand, the feasible set of most discrete optimization
problems, when given as a disjunctive set in CNF, has conjuncts that are the
unions of small numbers of halfspaces, often only two, Performing some
basic steps one obtains a set in RF whose conjuncts are still the unions
of small numbers of polyhedra. Note that if a disjunctive set is in the RF

given by (2.1), (2.2), each conjunct S, is in DNF; hence we know how to take

]
its convex hull. Naturally, taking the convex hull of each conjunct is in
general not going to deliver the convex hull of the disjunctive set, but can

serve as a relaxation of the latter, This takes us to the class of felaxa-

tions announced at the beginning of this paper.

4, A Hierarchy of Relaxations of a Disjunctive Set

Given a disjunctive set in regular form

F= 08§,
jeT J

where each Sj is a union of polyhedra, we define the hull-relaxation of

F, denoted h-rel F, as

f

i
[
i
[l
l
I
(
(

MM AL 24 * ememad v
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h-rel F := N el conv S.. p

jeT

The hull-relaxation of F is not to be confused with the convex

hull of F: 1its usefulness comes precisely from the fact that it involves

FRPOTRINITY g L)

taking the convex hull of each union of polyhedra before intersecting them.
Next we relate the hull-relaxation of a disjunctive set to the usual

linear programming relaxation of the feasible set of a mixed integer program.

N T

Obviously, the hull-relaxation of any disjunctive set is polyhedral, since J
the intersection of polyhedra is a polyhedron. Suppose now that we have a ;

disjunctive set in CNF,

Fo= nD.,
jer J

where each Dj is the union of halfspaces. Let T* = {jéT\Dj is improper},

and denote

P = N D,
°  jerx

n
with P° =R {if T = @, P can be viewed as the "polyhedral part" of Fo,

i.e., the intersection of those elementary disjunctive sets that are halfspaces.

Lemma 4.1,

h-rel F =P , R
o

° .
Proof. ]
/ \ / : e
h-rel( N D, = h-rel{?_ N ( /7~ N\DY)

jer A ° err+ )
/ N f
= ¢l conv P ﬂ{\//‘\\ ¢l conv D./ K

° Vjer T J

Y U -
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by the definition of the hull-relaxation. But cl conv Po = Po and from

Theorem 3.6, cl conv D, =R" for all jeT\T*. This yields the equality

stated in the Lemma.;
When the feasible set of a (pure or mixed integer) 0O-1 program is
stated in CNF (which is the usual way of stating it), T* is the index set
of all the conjunctive, i.e., ordinary linear comstraints, and T\T* is the
index set of the disjunctions Xy <oV xj‘z 1. Thus Po is the linear pro-
gramming feasible set, and the hull-relaxation of a (pure or mixed-integer)

0-1 program stated in CNF is identical to the usual linear programming

. relaxation.

R

' The next question we address is what happens if one applies the hull-
relaxation to a disjunctive set that is not in CNF, Specifically, we look

i. at the effect of a basic step in the sense of relating the hull-relaxation

of the RF before the basic step to that of the RF after the basic step.

Lemma 4.2. For j =1, 2, let

» TRBALT

where each Pi’ ier, j=1, 2, is a polyhedron. Then

@
i 4.1 cl conv(S1 n SZ) S (cl conv Sl) N (el conv Sz).

Proof. Certainly 511782‘=(c1 conv Sl)FW(cl conv Sz}, and since
'@ cl conv (SIFWSZ) is the smallest closed convex set to contain SIFWSZ, (4.1)

follows.

Theorem 4.3. For i = 0, 1,...,t, let

L Fgo= 1S
JeT,

N . ) L, . . PP PP T U T S T R
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111 be a sequence of regular forms of a disjuntive set, such that
(1) F_ is in CNF, with P_ = n(sﬁls? is improper};

(ii) Ft is in DNF;

ol bl

(iii) for i=l,,..,t, Fi is obtained from Fi-l by a (possibly

parallel) basic step.
Then

P = h-rel F =h-rel F_.2...2 h-rel F_ =c¢l conv F .
o o t t

1

Proof. The first equality holds by Lemma 4.1, since Fo is in CNF.
The last equality holds by the definition of a hull-relaxation, since Ft H

is in DNF, i.e., |Tt| = 1. Each inclusion holds by Lemma 4,2, since for

k=1,...,¢t, Fk is obtained from Fk-l by a basic stepJ

For any Fi in the above sequence, we can obtain from the hull-relaxa-

Z tion a mixed-integer programming representation of Fi by using Theorem 3.6,

p

. However, this representation requires one 0-1 variable for every polyhedron

' Ph in the expression

P

4 w.2) F,=n s, st=yp , p ={yer"a" >a", nea,, jer,,

AN i : j j h h =" j i

A jel, heQ

. ]

-

P‘ which is usually much more than the number of 0-1 variables needed to

.

- represent the CNF of the same set, i.e.,

2 (4.3) F =n s, s%°= v &®.

rQ © rer T T seq °

;. The next theorem gives a mixed integer representation of Fi which uses

:. the same number of variables as that of Fo. For Fo as defined in (4.3), let ‘
f r _ o) .
3 T, = (rerolsr is proper}.

.

¢ '
L L o TN
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J
Theorem 4.4, Let Fo be the disjunctive set in CNF given by (4.3), 4
and let Fi be the disjunctive set in RF given by (4.2), obtained from FO 1
by a sequence of basic steps, and satisfying the conditions of Theorem 3.6. ]
n+l :
Then Fi is the set of those x ¢ }Rn for which there exist vectors (yh,y:)e R s 4
b
her, jeTi, and scalars érs’ SeQr’ re’rc:, satisfying N
h |
x- X vy =0 p
h
9 3
h h h h :
Ay -ay 2 0 heQJ. .
3 -
(4.4) . _]6:'1‘i P
>
¥, 20
z yh =1 K
heq, ° <
! !
!"‘ h J
-.'4 - = ’ "
‘_ (445) :.yo ars 0 chr R rs:To )
_- h|P, H a
T =1, reT’ ]
5 rs ) 3
. seQ, ._
L (4.6) }
-q érsc{o,l} , s€Q_, reT;.
!
& Proof. From Theorem 3.6, for each jeT; the constraints (4.4)
:, : define the convex hull of S?, and if amended with the condition y::a{o,l},
rQ
g her, they define Sjj' itself. We will show that the coustraints (4.5), (4.6)
enforce precisely this condition, and therefore all constraints together
. - i
L o define Fi .ﬂ S..
b jeT,
. i
d k .
f. For any given 5 satisfying (4.6), the unique set of Y, satisfying
p
a (4.5) is defined by
1 @
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h and seQr

: +

‘ = . 2P
.rg h 1 if 6rs 1, #(r,s).Hs

: 4.7 Yo

0 otherwise,

- Indeed, Grs = 0 implies yg = 0 for all her, jeTi, such that

+ - 3
Hrs ‘Ph’

which means that those constraints (4.5) for which 6rs = 1 must
be satisfied by setting y: = 1 for precisely those her, jeTi, for which
this is prescribed by (4.7).{

Theorem 4.4 provides a way of representing any disjunctive set in

regular form as the feasible set of a mixed-integer program with the same

number of OJ-1 variables as would be required to represent the same disjunc-
tive set in CNF.

In order to make best use of the hierarchy of relaxations defined
in Theorem 4.3, one would like to know which basic steps result in a strict
inclusion as opposed to an equality. The next theorem addresses this question,

Theorem 4.5. For j = 1, 2, let

where each Pi’ ieQ, j =1, 2, is a polyhedron. Then

;._ (4.8 cl conv(SIIWSZ) = (cl conv Sl)(ﬂ(cl coav SZ)

if and only if every extreme point (extreme direction) of (cl conv Sl) N
(cl conv SZ) is an extreme point (extreme direction) of PifWPk for some
e (1, Q) x Q.

Proof. Let TL and TR denote the lefthand side and righthand side,

respectively, of (4.8). Then

\
1 T. = ¢l convi U U (PiiWPk)/
L “16Q) keQ,




JRRSS

Thus x ¢ T, if and only if there exist scalars \i >0, jeV and v, > 0,

L 2
LeW, such that T A, = 1 and
je:VJ
X= ZVA,+ L w,u,,
janJ zewzz

where V and W are the sets of extreme points and extreme direction vectors,
respectively, of the union of all PiﬂPk, (i, k)eQ1 X Q2°
On the other hand, x ¢ T if and only if there exist scalars )‘j' >0,

jev’ and -,Lz’ >0, 4éW’, such that £ x = 1 and
JeV

X = EV Vj)\j + E sz.z,

e L

where V' and W' are the sets of extreme points and extreme direction vectors,

respectively, of T If the condition of the theorem holds, i.e., if V'&V

R

and w’:w then 'I' &<T,, and since by (4.1) T <T_ , we have T_ = TR as

, L’ R’ L
claimed. TIf, on the other hand, VAV £ 0 or w W aé f#, then there exists
X € TR TL, hence (4.1) holds as strict inclusion.”

One immediate consequence of this Theorem is

Corollary 4,6, Let

= {x e]Rn\OSx. <1, j=1,...,n},

J
and
=[xeK|xj50\/xj21}, i=1,...,n.
Then
n n
4.7 conv NS, = Nconv S,,
j=1 J J=1 J
Thus basic steps that replace a set of disjunctive constraints of
the form

x.gOVxJ.zl, jeT

by a disjunctive constraint of the form




x, >1/, jer's

before taking the hull-relaxation, do not produce a stronger relaxation:
taking the convex huil before or after the execution of such basic steps
produces the same result, In order to obtain a stronger hull-relaxation,
the basic steps to be performed must involve some other constraints than
those of the above form. »

Next we illustrate on some examples various situations when taking

the convex hull before or after a basic step does make a difference.

- 2
Exangle 4.1. (Fig. 3.1) Let P, = {x eRr ]xl =0,0%< x, < 1},
P. = = = 2
, = {xeR |x1 1, 0<x,<1}, Py = {x ¢R |-x1+x220.5, x, 20,

- 2
X, < 1}, P, {x eR |x1 - x, 20.5, x; <1, X, 20}, and let F = Slﬂsz,

with Sl = PIUPZ’ S2 = P3UP4. Then

1
©, 1) 1, 1 Py @ D
[T 7 O
|
P, = <~ P !
1 2
©, ) 1, P
|
A
©0, 0  @,0 Lo
1
1,
. - 1, 0)
(—2-, 0) (el conv(Slf'Sz)

(cl conv Sl) N (el conv Sz)

Fig, 3.1
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<1, 0 <1}

1 2 =
cl conv §, = {x 61R2l0.55x1+x2< 1.5, nglgl, ngzgl},

IA
™

cl coav 5, = {x eIRZ\O <x

and

(¢l conv Sl) fi (el conv 52) = ¢l conv 32.

On the other hand, Slﬁs2 = (I-‘1 UP3) N (PZU Pa) (since P1 ﬂPa =
PzﬁP3 = ), and

cl conv(s, NS,) = {x eRzll <% +2x, <2,0<x

11 2% s 1k

1

Here (4.1) holds as strict inclusion, because the vertices (0.5, 0)
and (0.5, 1) of (cl conv S) N (cl conv SZ) are not vertices of either P1 ﬂP3
or P2 ﬂP4, although the first one is a vertex of PA’ and the second one a

vertex of P..

3
Example 4.2. (Fig. 3.2) Let P, = {x ¢ R’ \xl =0, x, > 0},
2 2
P2={xe]R\x1=1,x2=O}, P3={x s]R\x1=0,x2=0},
2 .
P, = {x eR [x1 =1, x, 20}, and let F = $,08,, with s, = P, UP,,
52 = P3UP4. Then
P1 Pl&
P S < P .
3 — v 2 0,0 1, o
0,0 ) (1,0 ’ ’
(el conv Sl) N (el conv Sz) cl conv(Sl (":82)
Fi - 3.3
cl conv S, = cl conv S, = {x eIR2\0 <% <1, x, 20},

(cl conv Sl) N (el conv 52),

Whereas
= t! - ‘o
cl conv(Sl ISZ) cl CORV((PI VPB) ; (Pz - P: )

= {x elelOSx <1, x, = 0}.

1 2
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Here (4.1) holds as strict inclusion because (0, 1) is an extreme
direction vector of (cl conv Sl) A (cl conv Sz), but not of Plﬂ93 or P20P4.

It is an important practical problem to identify typical situations
when it is useful to perform some basic step, i,e., to intersect two con-
juncts of a RF before taking their convex huli. The usefulness of such a
step can be measured in terms of the gain in strength of the hull-relaxation
versus the price one has to pay in terms of the increase in size, Since the
convex hull of an elementary disjunctive set is Efl,i.e., taking the convex
hull of such sets does not constrain the problem at all, one should inter-
sect each elementary disjunctive set Sj in the given RF with some other con-
junct Sk before taking the hull-relaxation. This can be done at no cost (in
terms of new variables) if Sk is improper. Often intersecting a single im-
proper conjunct Sk with each proper disjunctive set Sj appearing in the same
RF, i,e., executing a single parallel basic step before taking the hull re-
laxation, can substantially strengthen the latter without much increase in
problem size. As to shich improper conjunct Sk to select, a general principle
that one can formulate is that the more restrictive is Sk with respect to each

Sj’ the better suited it is for the purpose. The next example illustrates this.,

Example 4.3 Consider the 0-1 program
in 4 1
< = - - . e 2%
(P) min 1z X, + szl X, + %, > 0; X, +4x, > 23 %), xze{O, 1};

illustrated in Fig. 3.3.

-X, + x

17 %20

o, 1)
1,

\\41\\ z = -x; + 4x2
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The usual linear programming relaxation gives the optimal soiution
Xy = Xy = 2/5, with a value of z = 6/5. This of course corresponds to
taking the hull-relaxation of the CNF of the feasible set of (P), which

contains as conjuncts the improper disjunctive sets corresponding to each

of the inequalities of (P) (including 0 < X, €1, 0<%, < 1) and the

2

two proper disjunctive sets S, = {x eimzlxIAS 0V x >1},

1
2
S, = {x eiR,]xz <0Vx, >1}. If P is the intersection of all the
improper disjunctive sets, the hull relaxation of the CNF of (P) is
F =P Nconv S, Nconv S,.
o o 1 2

LetuswriteK={xe]R2105x1<1,0<x

< <%, < 1}, and P =P ; NP ,,

with P, = {x ¢ Kl-x1 +x, > 0}, P, = {x ¢ K]xl + 4x, 2 2}. Now suppose we
intersect each of S1 and 32 with P01 before taking the convex hull, i.e.,
use the hull relaxation Fl =P, N conv(P°1 n Sl) n conv(Po1 n SZ)' We find
that conv(Pol ] Sl) = couv(I’o1 n SZ) = {x ¢ K\~x1 + x, > 0}, and hence

Fl = Fo’ i.e., these particular basic steps bring no gain in the strength

of the relaxation,

Suppose instead that we intersect S1 and 82 with PoZ before taking the
convex hull, i.,e., use the hull relaxation FZ =P, N conv(P°2 N Sl) n
conv(P°2 n 82). Then conv(P02 N Sl) ={x ¢ K]x1 + sz > 21, conv(P02 n 52)
={x ¢ K]x2 =1}, and F, = {x ¢ K]x2 = 1}, which is a stronger relaxation
than Fo. Using the relaxation F2 instead of Fo’ i.e., solving min{z = -x1
+ szlx ¢ Fz}, yields ﬁl = iz = 1, with 2 = 3, which happens to be the

optimal solution of (P).

Note that Pol cuts off only one vertex of conv(s1 aK) = conv(S2 i K) =

whereas P_, cuts off two vertices of K.'l
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When basic steps are used that intersect proper disjunctive sets
before taking their convex hull, the number of variables in the hull relaxa-
tion increases. Especially attractive are those situations where the in-
crease in problem size is mitigated by the presence of some structure that
makes it possible to solve the increased linear programs efficiently. This

is the case in the machine sequencing problem discussed in the next section,

as well as in certain network synthesis and fixed charge network flow problems.

5. An Illustration: Machine Sequencing via Disjunctive Graphs

In this section we illustrate the concepts and methods discussed in
sections 1-4 on the example of the following well known job shop scheduling
(machine sequencing) problem: n operations are to be performed on different
items using a set of machines, where the duration of operation i is di' The
objective is to minimize total completion time, subject to (i) precedence con-
straints between the operations, and (ii) the condition that a machine can
process only one item at a time, and operations cannot be interrupted. The

problem is usually stated [1] as

min t
n
E, - t, > (i,3) e 2
j i2 dz’ J
(P) £, 20, ieV
A +
t, -t,>d, V¢t -¢t, >d , (1,j) e W
j i=i i J J

where ty is the starting time of job i (with n the dummy job "finish"),
V is the set of operations, Z the set of pairs constrained by precedence
relations, and W' the set of pairs that use the same machine and therefore

cannot overlap in time. It is often useful to represent the problem by a

P PP S YU S PP VO W W e cmcncane s, oo —n s o ad
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dis junctive graph G = (V, Z, W), with vertex set V and two kinds of directed

arc sets: conjunctive (or usual) arcs, indexed by Z, and disjunctive arcs,
indexed by W. The set W consists of pairs of disjunctive arcs and is of 1
the form W = W UW", with (1,j)eW’ if and only if (j,1)eW . The subset a
of nodes corresponding to each machine, together with the disjunctive arcs
joining them to each other, forms a disjunctive c¢lique. A gelection SCW

consists of exactly one member of each pair of W: i.e., there are 2q 1

possible selections, where q = %‘W!: G is illustrated in Fig. 5.1, where the
disjunctive arcs are shown by dotted lines, If @ denotes the set of selections,
for every S e§, GS = (V, ZUS) is an ordinary directed graph; and the prob-

lem (P(S)) obtained from (P) by replacing the set of disjunctive constraints
indexed by W+ with the set of conjunctive constraints indexed by S is the

dual of a longest path (eritical path) problem in G Thus solving (P)

g°
amounts to finding a selection S ¢S that minimizes the length of a critical

path in GS.

The usual mixed integer programming formulation of (P) represents

each disjunction

(5.1) tj-t > d Viog, - t, >d,
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£, - t, = (d

j 1 > L

i Lij)yij =M

>d

(5.2) -tj + t, + (dj - Lji)yij 2 4

i

yij ‘{0’1}9

where Lij is a lower bound on tj - ti. Unless one wants to use a very

crude lower bound Lij’ one has to derive lower and upper bounds, Lk and

Uk’ respectively, on each t,, ieV, and set L,, = L, - U,. L, can be taken

i’ i3 j i 3
to be the length of a longest path from node 1 (the source) to node j in the

(conjunctive) graph GQ = (V, Z), and Uj the difference between the length

of a critical path in G, for some arbitrary selection S ¢S, and the length

S
of a longest path from node j to node n (the sink) in Gg‘
The constraint set (5.2) accurately represents (5.1) (amended with
the bounds Lk < tk‘S U‘, ® =1,2), but its linear programming relaxation
(5.2);, obtained by replacing yije{o,l} by 0 < Vs < 1, has no constraining

power, as shown by the next theorem.

Theorem 5.1. If the disjunction (5.1) is proper, then every s tj

that satisfies

(5.3) L <t

1 =v

i S I=731-73

also satisfies (S’Z)L'

Proof. It suffices to show that the four extreme points (Li’ Lj)’

(Li’ u,), (Ui’ Lj)’ (Ui’ U,) of the two-dimensional box defined by (5.3)

b] b
satisfy (5.2)L for some yij' We first write (5.2)L in the form

(5.2)L (Lj - Ui)(l - yij) + diyij < tj -t < ’dj(l - yij) + (Uj - Li)yij
0<ygy sl




e

and note that (Li’ Uj) and (Lj’ Ui) satisfy (5.2) for yij = 1 and yij 0,
respectively. To show that (Li’ Lj) satisfies (5°2)L for some yij’ we

substitute (Li’ Lj) into (5.2)L and obtain

d,.-L. +L, Ui-Li
L+, =Y. Sy L+ °
3 7L J itji

(5.4)
To see that (5.4) is feasible, note that the right hand side increases

with Ui ; So (5.4) is feasible if it is for the smallest admissible value of

Ui’ which is Lj + dj (for smaller Ui (5.1) becomes improper). Substituting

L, + dj for Ui we obtain that (5.2) is feasible whenever Li + di < Uj’

which is a condition for (5.1) to be proper.

An analogous argument shows that (Ui’ Uj) satisfies (5.2) for some

)
ylj. il

Consider now the mixed integer representation of (5.1) associated
with the hull-relaxation of the feasible set of (P), 1If the latter is
given in CNF, as is usually the case, applying the hull-relaxation fo this
form yields nothing, since the convex hull of the disjunctive set defined
by (5.1) is llz, the space of (ti, tj). I1f we perform a parallel basic
step of the type defined in section 3 and introduce into each disjunct of

(5.1) the lower and upper bounds on t, and tj, this replaces every elementary

i

disjunctive set D,, defined by a pair of constraints (5.1), by a disjunctive

ij

set

] i i i i=7;
S = t,,t \Y; .
13 = (Bt Pfi Ly S8y S0y Lyt 20
L, <t, <U, L, <t, <U
=3 j =3 3

Sy

'-‘\4‘1"
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The feasible set of (P) is then of the form

(5.7) F = Pon\/,‘::;lsij/

where Po is the polyhedron defined by the inequalities (5.3) and t, - t, > di’

3 i-=

(1,i) ¢ Z. Further, we have (since all S,, are bounded, clconv S,.. = conv S,j)
1

ij ’ ij
h-rel F = p°n</"—-\\\ conv si,>,
(i,1) et J
and from Theorem 3.3, the convex hull of Sij is the set of those (ti,tj)

satisfying the constraints

1 2
ty ~ tk - tk =0 , k=41,j

1 1

tj - ti > diyij
2 2

- tj + oty >d.(1 - v, )
(5.8)

1

Leysg S & S Uy

k= 1,]
Ll - y) St ST -y,

Also, from Corollary 3.7, the set of those (ti,tj) satisfying

(5.8) and y, e{o 1} is S;» since both disjuncts of Sij are bounded

ij

polyhedra; and thus using (5.8) with y, (0,1} for all 1,1’ is a

valid mixed integer formulation of (P). This representation uses the

same number of 0-1 variables as the usual one, but introduces two new

variables, t;, ti, for every original variable tk’ with associated bounding
1 2

inequalities kaij < tk < Ukyij, Lk(l - yij) < =N < Uk(l - yij)' At the

price of this increase in the number of variables and constraints, one

oY

aasinti.
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obtains as the hull-relaxation a linear program whose feasible set is
considerably tighter than in the usual formulation, since each constraint
set (5,8) defines the convex hull of Sij' It is not hard to see that each
of the two points (Li’ Lj) and (Ui’ Uj) violates (5.8) unless it is con-
tained in one of the two halfspaces defined by tj - ti > di and b, - tj > dj'
Let us now perform some further basic steps on the regular form (5.7)
before taking the hull-relaxation. 1In particular, let us intersect all Si'

such that i and j belong to the same disjunctive clique K., If we denote

T(K): = n(sij: i, jeK, iAj), and if |K| = p, then

- >d v . . ‘g
£ t:j 2 d, t:j £ 2 di, i, jeK, i#j
T(K) = terP .

L, <t <U,, ieK
= i-"i

Taking the basic steps in question consists of putting T(K) in
dis junctive normal form, Let < K > denote the subgraph of G induced by
K, i.e,, the disjunctive clique with node set K. A selection in < K >,
as defined at the beginning of this section, is a set of arcs containing
one member of each disjunctive pair, Thus if < K > is viewed simply as
the complete digraph on K, then a selection is the same thing as a
tournament in < K >, If S, denotes the k~th selection in < K > and Q

k

indexes the selections of < K >, then the DNF of T(K) is T(X) = U Tk(K),
keQ
where

tj = ti 2 di, i,3) esk

= P
Tk (K) teR .

[
IN
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{ S Ui’ ieK
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It is easy to see that if 5, contains a cycle, then tk(K) = @,
Let Q* = {keQ[Sk is acyclic}. Every selection is known to contain a
directed Hamilton path, and for acyclic selections this path must be
unique, Furthermore, every acyclic selection is the transitive closure
of its unique directed Hamilton path.

Let Pk denote the directed Hamilton path of the acyclic selection

Sk ; then Sk is the transitive closure of Pk’ and the inequalities
tj -t di’ (1,3) ¢ Pk’ obviously imply the remaining inequalities of
Tk(K), corresponding to arcs (i,j) e Sk\Pk. Thus a more economical ex-

pression for the DNF of T is T(X) = U Tk(K), with
keQ*

AY

tj - ti > di’ (laJ) GPk

T (K) = teRP .

-
IA

t, <U,, ik
i-="i

Now let M be the index set of the disjunctive cliques in G, and K
m
the node set of the m-th such clique. Then the RF obtained from (5.7)
by performing the basic steps described above is
(5.9) F = Po nNf YT®)),
m
meM
and the hull-relaxation of this form is
(5.10) h-rel F =P N ([ Y conv T(K )).
o m
meM
For meM, let Q: index the acyclic selections in < Km >; and for
keQ;, let Sz and PE denote the k-th acyclic selection in < Km >, and its
directed Hamilton path, respectively. Then introducing a continuous
variable k: for every acyclic selection SZ and a 0-1 variable y]._j for
every disjunctive pair of arcs {(i,j), (j,i)}, and using Theorem 4.4,
we obtain the following mixed integer formulation of problem (P) based

on the hull-relaxation (5.10).
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.
min tn ’_j
L, =t . ]
j i Z di (l,J)eZ I
k 4
t, - T =0 jeK , meM ]
J ké:q’; J m 4
).
k k m A
- t,, + t, - ) ]
JLL,k) T Si2,k) 451,10 20 ]
g
o ° -1
L ] . 4
(P) - . . . Lke%; meM
k k m
t. - + t, - d, A >0 .
k k m y, ‘T
T, -t + (U, -L. A, >0
31,50 i Y0 a2 |
T . :
kel =1 e *
m
e iy =1
k[(1,1)es, © " H .
(1,§)eW
)
k] (3,0)eS, LI &
k : . o0 . c eyt
€ £/ 20, ¥ 5.k A 20, ¥ kym; v, ,e{0,13, (1, 1)eW”

Theorem 5.2. Protlem (P) is equivalent to (P): if t is a feasible
solution to (P), there exist vectors tk and scalars kﬂ, keQ*, meM, and a
m
vector y, satisfying the constraints of (f); and conversely, if t, tk, ﬂ;,

keQ:, meM, and y satisfy the constraints of (P), then t is a feasible

solution to (P).

Proof. (P) is the representation of (P) given in Theorem 4.4, with

the set Fi replaced by F as defined in (5,9), and with the difference that
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the upper bounding inequalities - t? + Uj Xk >0, jeKm, are replaced by

k
k) T e T Yiee T et 2 0
k

The role of the upper bounding inequalities is to force each tj to 0 when

the single inequality t?

Kz==0, and the inequality that replaces them in P does precisely that:
together with the inequalities associated with the arcs of PE, it defines
a directed cycle in < Km > and thus k: = 0 forces to 0 all t?, jeKm.H

The linear programmimg relaxation of (f) is much stronger than the
linear programming relaxation of the common mixed integer formulation of (P).
Preliminary computational experience on a few small problems indicates that

the value of this stronger linear programming relaxation tends to be much

higher than that of the usual linear programming relaxation. For example:

Value of
Usual LP Strong LP IP
Problem 1 18 25.1 31
Problem 2 8 10,7 13
Problem 3 20 25.8 35

On the other hand the linear programming relaxation of (), unlike
that of the usual mixed integer formulation of (P), is not a longest path
problem, This is a serious disadvantage, which has to be overcome by
finding a solution method that takes advantage of the structure of (P).
While this is in general still an unsolved problem, an important
aspect of it has been successfully solved, Namely, if (P) is to be
solved by projection on the space of the y-variables, i.e., by Benders's
partitioning method, then in order to generate the inequalities of the
Benders master problem one has to solve the dual of the linear program
obtained from (P) for various 0-1 values of y. We have recently found a

way of deriving a solution to this problem from a solution to the longest

.
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path problem that corresponds to it in the usual formulation of (). But

the discussion of this algorithm is left to another paper.
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the intersection (conjunction) of unions of polyhedra, and define an
operation that takes one such expression into another, equivalent one,
with fewer conjuncts, We thenr introduce a class of relaxations based
on replacing each conjunct (union of polyhedra) by its convex hull,
The strength of the relaxations increases as the number of conjuncts
decreases, and the class of relaxations forms a hierarchy that spans
the spectrum between the common linear programming relaxation, and
the convex hull of the feasible set itself, Instances where this
approach presents advantages include critical path problems in dis-
junctive graphs, network synthesis problems, certain fixed charge
network flow problems, etc., We illustrate the approach on the first
of these problems, which is a model for machine sequencing.
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